Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 10(5)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615957

RESUMO

The microbiome is important to all animals, including poultry, playing a critical role in health and performance. Low-dose antibiotics have historically been used to modulate food production animals and their microbiome. Identifying alternatives to antibiotics conferring similar modulatory properties has been elusive. The purpose of this study was to determine if a host-tailored probiotic could recapitulate effects of a low-dose antibiotic on host response and the developing microbiome. Over 13 days of life, turkey poults were supplemented continuously with a low-dose antibiotic or oral supplementation of a prebiotic with or without two different probiotics (8 cage units, n = 80 per group). Gastrointestinal bacterial and fungal communities of poults were characterized by 16S rRNA gene and ITS2 amplicon sequencing. Localized and systemic host gene expression was assessed using transcriptome sequencing (RNA-Seq), kinase activity was assessed by avian-specific kinome peptide arrays, and performance parameters were assessed. We found that development of the early-life microbiome of turkey poults was tightly ordered in a tissue- and time-specific manner. Low-dose antibiotic and turkey-tailored probiotic supplementation, but not nontailored probiotic supplementation, elicited similar shifts in overall microbiome composition during development compared to controls. Treatment-induced bacterial changes were accompanied by parallel shifts in the fungal community and host gene expression and enhanced performance metrics. These results were validated in pen trials that identified further additive effects of the turkey-tailored probiotic combined with different prebiotics. Alternative approaches to low-dose antibiotic use in poultry are feasible and can be optimized utilizing the indigenous poultry microbiome. Similar approaches may also be beneficial for humans.IMPORTANCE Alternative approaches are greatly needed to reduce the need for antibiotic use in food animal production. This study utilized a pipeline for the development of a host-tailored probiotic to enhance performance in commercial turkeys and modulate their microbiota, similar to the effects of low-dose antibiotic administration. We determined that a host-tailored probiotic, developed in the context of the commercial turkey gut microbiome, was more effective at modulating these parameters than a nontailored probiotic cocktail. Furthermore, the host-tailored probiotic mimicked many of the effects of a low-dose antibiotic growth promoter. Surprisingly, the effects of the antibiotic growth promoter and host-tailored probiotic were observed across kingdoms, illustrating the coordinated interkingdom effects of these approaches. This work suggests that tailored approaches to probiotic development hold promise for modulating the avian host and its microbiota.


Assuntos
Antibacterianos/farmacologia , Probióticos , Animais , Microbiota/efeitos dos fármacos , Micobioma/efeitos dos fármacos , RNA Ribossômico 16S/genética , Perus
2.
Front Plant Sci ; 4: 245, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23882272

RESUMO

Nutrient response networks are likely to have been among the first response networks to evolve, as the ability to sense and respond to the levels of available nutrients is critical for all organisms. Although several forward genetic screens have been successful in identifying components of plant sugar-response networks, many components remain to be identified. Toward this end, a reverse genetic screen was conducted in Arabidopsis thaliana to identify additional components of sugar-response networks. This screen was based on the rationale that some of the genes involved in sugar-response networks are likely to be themselves sugar regulated at the steady-state mRNA level and to encode proteins with activities commonly associated with response networks. This rationale was validated by the identification of hac1 mutants that are defective in sugar response. HAC1 encodes a histone acetyltransferase. Histone acetyltransferases increase transcription of specific genes by acetylating histones associated with those genes. Mutations in HAC1 also cause reduced fertility, a moderate degree of resistance to paclobutrazol and altered transcript levels of specific genes. Previous research has shown that hac1 mutants exhibit delayed flowering. The sugar-response and fertility defects of hac1 mutants may be partially explained by decreased expression of AtPV42a and AtPV42b, which are putative components of plant SnRK1 complexes. SnRK1 complexes have been shown to function as central regulators of plant nutrient and energy status. Involvement of a histone acetyltransferase in sugar response provides a possible mechanism whereby nutritional status could exert long-term effects on plant development and metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...